世界生命科學(xué)前沿動態(tài)周報(十七)
(07.26 --08.01 / 2010)
美寶國際集團:陶國新
本周動態(tài)包括以下內(nèi)容:科學(xué)家分離出人類胚胎中胚層祖細胞;關(guān)鍵基因控制哺乳動物組織再生;關(guān)鍵基因控制哺乳動物組織再生;臺灣研究人員發(fā)現(xiàn)“尼古丁受體”證實吸煙致乳癌;Btbd7基因調(diào)控上皮細胞動力學(xué)及分支形態(tài)的發(fā)生;糖尿病與生物節(jié)律有關(guān);單細胞基因表達分析時代的來臨。
1. 科學(xué)家分離出人類胚胎中胚層祖細胞
【摘要】科技日報 發(fā)布時間:2010-7-28 10:57:56
在最新一期的美國《國家科學(xué)院院刊》(PNAS)網(wǎng)絡(luò)版上,美國加州大學(xué)洛杉磯分校布羅德干細胞研究中心的科學(xué)家們描述了一個標志人類胚胎干細胞分化最初階段的細胞群,這些細胞由此將進入一個發(fā)育路徑,并最終形成血液、心肌、血管和骨骼等。此項發(fā)現(xiàn)或?qū)椭茖W(xué)家們創(chuàng)建出可用于再生醫(yī)學(xué)的更好、更安全的組織,也將允許科學(xué)家們更好地了解可成為身體內(nèi)任何細胞的多能干細胞與那些失去了多能性、正在變成特定組織細胞的細胞之間的差異。在早期發(fā)育階段,人類胚胎干細胞遵循3個不同的發(fā)育路徑來形成最初的生殖細胞層:中胚層,外胚層和內(nèi)胚層。這3個胚層細胞接下來會變成各種人體組織。在這項研究中,加州大學(xué)洛杉磯分校病理學(xué)和實驗室醫(yī)學(xué)教授蓋伊•克魯克斯博士和她的團隊對隨后將進入中胚層路徑的人類胚胎干細胞進行了研究,此一路徑最終將導(dǎo)致形成血液細胞、血管、心臟細胞、肌肉、軟骨、骨骼和脂肪。
在將人類胚胎干細胞放入培養(yǎng)皿中三四天后,研究人員發(fā)現(xiàn)這些細胞的一小部分已失去了表征細胞多能狀態(tài)的一個重要的表面標志特征,并獲得了新的代表中胚層細胞的標記。由于這些標記陳列在細胞表面,利用特異性抗體就可從培養(yǎng)皿的其他細胞中分離出人類胚胎中胚層祖細胞(hEMP細胞)。研究人員表示,hEMP細胞是從人類胚胎干細胞轉(zhuǎn)變成中胚層細胞的最初階段細胞。盡管這些細胞似乎必定會形成中胚層,但它們尚未確定會形成何種中胚層組織??唆斂怂沟难芯恐攸c是利用人類胚胎干細胞制造出造血干細胞。研究表明,由實驗室中的人類血液干細胞制成的造血干細胞缺乏在骨髓或臍帶血中的造血干細胞所擁有的某些功能,因此,由胚胎干細胞而來的造血干細胞并不能發(fā)育成一個最理想的免疫系統(tǒng)??唆斂怂瓜M?,hEMP細胞可用于創(chuàng)建和骨髓與臍帶血中造血干細胞一樣功能強大的造血干細胞,這些細胞將可安全地用于人體,以治療諸如白血病和鐮狀細胞貧血癥等疾病。經(jīng)廣泛測試證明,hEMP細胞失去了形成畸胎瘤的能力,而形成畸胎瘤的能力是胚胎干細胞的一個標志??唆斂怂贡硎荆腔诳赡苄纬苫チ龅娘L(fēng)險,研究人員普遍認為在人體中使用多能干細胞并非良策。此次分離出的hEMP細胞由于不具備形成畸胎瘤的能力,因此,對于開發(fā)用于人體的治療方法來說,hEMP細胞應(yīng)是一個安全的選擇。目前,研究人員正在研究如何以最佳方式引導(dǎo)這些hEMP細胞發(fā)育成中胚層細胞譜系中的任何類型,并對這些細胞加以操控,以使它們在增殖和分化時成為功能性細胞。
【點評】
失去了形成畸胎瘤的能力理論上使中胚層祖細胞比胚胎干細胞在人體中使用時更安全,但僅是這樣還不能排除干細胞療法目前面臨的障礙,也無法保證中胚層祖細胞在臨床上能成功使用。
【原文摘錄】Published online before print July 19, 2010, doi: 10.1073/pnas.1002077107
Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells
Denis Evseenko, Yuhua Zhu, Katja Schenke-Layland, et al.
Our understanding of how mesodermal tissue is formed has been limited by the absence of specific and reliable markers of early mesoderm commitment. We report that mesoderm commitment from human embryonic stem cells (hESCs) is initiated by epithelial-to-mesenchymal transition (EMT) as shown by gene expression profiling and by reciprocal changes in expression of the cell surface proteins, EpCAM/CD326 and NCAM/CD56. Molecular and functional assays reveal that the earliest CD326−CD56+ cells, generated from hESCs in the presence of activin A, BMP4, VEGF, and FGF2, represent a multipotent mesoderm-committed progenitor population. CD326−CD56+ progenitors are unique in their ability to generate all mesodermal lineages including hematopoietic, endothelial, mesenchymal (bone, cartilage, fat, fibroblast), smooth muscle, and cardiomyocytes, while lacking the pluripotency of hESCs. CD326−CD56+ cells are the precursors of previously reported, more lineage-restricted mesodermal progenitors. These findings present a unique approach to study how germ layer specification is regulated and offer a promising target for tissue engineering.
2. 關(guān)鍵基因控制哺乳動物組織再生
【摘要】來源:PNAS 發(fā)布時間:2010-7-30 12:37:54
與海綿、扁形蟲、水螅和蠑螈這些動物界的肢體再生冠軍不同,哺乳動物缺乏附肢再生的能力。如今,一項在實驗室小鼠中進行的新研究,利用這項“絕技”的一個罕見例外證明了一種腫瘤抑制因子能夠作為哺乳動物體內(nèi)的再生能力關(guān)鍵調(diào)控因子。一些小鼠的與眾不同之處在于,如果它們的耳朵上被刺了個小洞,這些嚙齒動物能夠通過一種再生過程來使傷口愈合。與形成疤痕組織不同的是,傷口的治愈過程始于一種胚基——能夠發(fā)生細胞增殖和去分化的一種結(jié)構(gòu)——的形成。然而迄今為止,為什么這種附肢再生僅僅會發(fā)生在這些被科學(xué)家稱為“醫(yī)療者”的小鼠中卻依然是個未解之謎。美國賓夕法尼亞州費城Wistar研究院的Khamilia Bedelbaeva和同事發(fā)現(xiàn),來自一種“醫(yī)療者”小鼠的細胞,也就是所謂的MRL細胞,具有一種不尋常的細胞周期表型,即細胞能夠在G2和M階段之間的邊界上積聚。這條能夠增加細胞增殖潛能的G2/M斜線在包括從水螅到哺乳動物肝細胞的其他再生體系中也曾被發(fā)現(xiàn)。連同細胞凋亡標記水平的增加,與來自野生型小鼠的細胞相比,MRL纖維原細胞還表現(xiàn)出了脫氧核糖核酸(DNA)損傷及修復(fù)水平的增加。哺乳動物腫瘤抑制因子p21是一種DNA損傷響應(yīng)以及細胞周期的調(diào)節(jié)物。那么這種蛋白質(zhì)是否也是哺乳動物再生過程的一個關(guān)鍵調(diào)節(jié)因素呢?研究人員發(fā)現(xiàn),在“醫(yī)療者”小鼠的MRL細胞中,p21的表達是缺失的。除此之外,通過刪除細胞周期蛋白—依賴激酶抑制劑1A(CDKN1A)——一種編碼p21的基因,能夠?qū)⒎恰搬t(yī)療者”小鼠轉(zhuǎn)化為“醫(yī)療者”小鼠,這證實了在小鼠中,p21是一種再生能力的反向調(diào)節(jié)因素。研究人員在最近出版的美國《國家科學(xué)院院刊》上報告了這一研究成果。Bedelbaeva推斷,在“醫(yī)療者”小鼠中提高增殖潛能并伴隨更高水平的凋亡,將使得細胞分化得以迅速發(fā)生,同時不必面臨發(fā)展出腫瘤的風(fēng)險,從而促進了再生過程。研究人員希望,這些新的發(fā)現(xiàn)或許將最終在臨床試驗中給出刺激人體再生能力的方法。(來源:科學(xué)時報 群芳)
【點評】
此項研究證實了在小鼠中,腫瘤抑制因子p21是一種再生能力的反向調(diào)節(jié)因素。p21表達缺失的“醫(yī)療者”小鼠能使細胞在G2和M期之間的邊界上積聚,提高增殖潛能,促進了再生過程。這一發(fā)現(xiàn)豐富了我們對于哺乳動物再生能力調(diào)控因素的認識,但目前還遠不能斷定其臨床應(yīng)用前景。
【原文摘錄】PNAS March 30, 2010 vol. 107 no. 13 5845-5850
Lack of p21 expression links cell cycle control and appendage regeneration in mice
Khamilia Bedelbaeva, Andrew Snyder, Dmitri Gourevitch et al.
Animals capable of regenerating multiple tissue types, organs, and appendages after injury are common yet sporadic and include some sponge, hydra, planarian, and salamander (i.e., newt and axolotl) species, but notably such regenerative capacity is rare in mammals. The adult MRL mouse strain is a rare exception to the rule that mammals do not regenerate appendage tissue. Certain commonalities, such as blastema formation and basement membrane breakdown at the wound site, suggest that MRL mice may share other features with classical regenerators. As reported here, MRL fibroblast-like cells have a distinct cell-cycle (G2/M accumulation) phenotype and a heightened basal and wound site DNA damage/repair response that is also common to classical regenerators and mammalian embryonic stem cells. Additionally, a neutral and alkaline comet assay displayed a persistent level of intrinsic DNA damage in cells derived from the MRL mouse. Similar to mouse ES cells, the p53-target p21 was not expressed in MRL ear fibroblasts. Because the p53/p21 axis plays a central role in the DNA damage response and cell cycle control, we directly tested the hypothesis that p21 down-regulation could functionally induce a regenerative response in an appendage of an otherwise nonregenerating mouse strain. Using the ear hole closure phenotype, a genetically mapped and reliable quantitative indicator of regeneration in the MRL mouse, we show that the unrelated Cdkn1atmi/Tyj/J p21−/− mouse (unlike the B6129SF2/J WT control) closes ear holes similar to MRL mice, providing a firm link between cell cycle checkpoint control and tissue regeneration.
3. 臺灣研究人員發(fā)現(xiàn)“尼古丁受體” 證實吸煙致乳癌
【摘要】中國新聞網(wǎng) 發(fā)布時間:2010-7-29 10:12:01
臺北醫(yī)科大學(xué)研究團隊日前公布一項醫(yī)學(xué)新發(fā)現(xiàn)稱,乳房上皮細胞的表面有某種尼古丁受體,此受體受到香煙中的尼古丁刺激,就會導(dǎo)致細胞癌化。因此,抽煙或吸二手煙將會導(dǎo)致乳癌。 乳房上皮細胞表面的尼古丁受體α9,在尼古丁持續(xù)刺激下,細胞過度反應(yīng),會自動活化再發(fā)展出更多的受體α9,久而久之,造成細胞癌化與腫瘤增生。 該研究團隊進一步發(fā)現(xiàn),將受體α9反應(yīng)過度的細胞植入免疫缺陷鼠內(nèi),癌細胞就像踩了油門一樣,快速生長;相反地,利用基因調(diào)控技術(shù)抑制α9的活性,腫瘤就會明顯縮小。α9對尼古丁很敏感,碰到7ηM劑量的尼古丁,在60分鐘內(nèi),α9與尼古丁結(jié)合就會達到飽和,而二手煙中尼古丁濃度約有200ηM。 研究團隊也分析276例島內(nèi)女性病患的乳癌組織,證實α9與煙癮有關(guān),有煙癮女性的α9表現(xiàn)量,是吸二手煙、未抽煙者的2至3倍,而且α9越活躍者,乳癌愈惡性,發(fā)現(xiàn)罹癌時通常是乳癌晚期或末期。據(jù)報道,過去抽煙將導(dǎo)致乳癌的證據(jù),主要來自流行病學(xué)與間接的分子生物研究,這項研究是找到直接證據(jù),這為未來研制乳癌抗癌藥物找到重要的生物分子標靶。
【點評】
該項研究找到了抽煙將導(dǎo)致乳癌的直接證據(jù),除為未來研制乳癌抗癌藥物找到重要的生物分子標靶外或許還有助于說服女煙民戒煙以及女性拒絕二手煙。
4. Btbd7基因調(diào)控上皮細胞動力學(xué)及分支形態(tài)的發(fā)生
【摘要】EurekAlert! 2010-7-30 10:31:11
在胚胎發(fā)育的時候,我們有許多內(nèi)臟器官是通過上皮細胞的反復(fù)分支而形成的。研究人員說,一種被稱作Btbd7的特殊基因?qū)@一過程有幫助。 Tomohiro Onodera及其同事對小鼠的發(fā)育進行了研究并發(fā)現(xiàn),Btbd7蛋白控制著唾液腺和肺臟生長的上皮細胞分支。應(yīng)用成像技術(shù),研究人員能夠觀察到Btbd7調(diào)控著這種細胞分支以形成器官特征性結(jié)構(gòu)所需的“裂隙”。 Onodera及其同事說,Btbd7是通過調(diào)控諸如Snail2和 E-cadherin等其它蛋白質(zhì)來完成這一工作的。 他們還說,該蛋白質(zhì)通過抑制細胞之間的相互粘附而將細胞釋放出來,并使它們能夠按照在哺乳動物中分支器官生長所必需的方向遷徙。
【點評】
對小鼠的發(fā)育進行的研究發(fā)現(xiàn)Btbd7蛋白通過調(diào)控其它蛋白質(zhì)來完成調(diào)控唾液腺和肺臟生長的上皮細胞分支這一工作的。該蛋白質(zhì)通過抑制細胞之間的相互粘附而將細胞釋放出來,并使它們能夠按照在哺乳動物中分支器官生長所必需的方向遷徙。該研究有助于我們了解胚胎發(fā)育時細胞的遷移和細胞運動的集體調(diào)控。
【原文摘錄】Science DOI: 10.1126/science.1191880
Btbd7 Regulates Epithelial Cell Dynamics and Branching Morphogenesis
Tomohiro Onodera, Takayoshi Sakai, Jeff Chi-feng Hsu, et al.
During embryonic development, many organs form by extensive branching of epithelia through the formation of clefts and buds. In cleft formation, buds are delineated by the conversion of epithelial cell-cell adhesions to cell-matrix adhesions, but the mechanisms of cleft formation are not clear. We have identified Btbd7 as a dynamic regulator of branching morphogenesis. Btbd7 provides a mechanistic link between the extracellular matrix and cleft propagation through its highly focal expression leading to local regulation of Snail2 (Slug), E-cadherin, and epithelial cell motility. Inhibition experiments show that Btbd7 is required for branching of embryonic mammalian salivary glands and lungs. Hence, Btbd7 is a regulatory gene that promotes epithelial tissue remodeling and formation of branched organs.
5. 糖尿病與生物節(jié)律有關(guān)
【摘要】Nature 2010-7-30 10:08:12
在進食期間,胰島分泌胰島素來維持葡萄糖體內(nèi)平衡,這個有節(jié)奏的過程在糖尿病患者體內(nèi)被擾亂了?,F(xiàn)在,用小鼠所做實驗表明,胰島有它們自己的生物鐘,在睡眠-清醒周期中來組織和安排胰島素的分泌。轉(zhuǎn)錄因子CLOCK 和 BMAL1對這一過程很關(guān)鍵,攜帶Clock 和Bmal1基因的缺陷版本的小鼠會患“hypoinsulinaemia”(胰島素水平過低癥)和糖尿病。這項工作證明了一個局部組織的生物時鐘能夠在胰腺β細胞中將生物節(jié)律信號和新陳代謝信號整合起來,它說明生物節(jié)律分析是更深入了解代謝表現(xiàn)型以及治療2-型糖尿病等代謝疾病的關(guān)鍵。
【點評】
小鼠實驗的結(jié)果證明了糖尿病的發(fā)生與胰島自己的生物鐘有關(guān),一個局部組織的生物時鐘能夠在胰腺β細胞中將生物節(jié)律信號和新陳代謝信號整合起來,這一發(fā)現(xiàn)可能有助于糖尿病輔助治療。
【原文摘錄】Nature 466, 627-631 (29 July 2010) | doi:10.1038/nature09253
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
Biliana Marcheva, Kathryn Moynihan Ramsey, Ethan D. Buhr,et al.
The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and although rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism and insulin signalling is delayed in circadian mutant mice, and both Clock and Bmal1 (also called Arntl) mutants show impaired glucose tolerance, reduced insulin secretion and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival and synaptic vesicle assembly. Notably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective β-cell function at the very latest stage of stimulus–secretion coupling. These results demonstrate a role for the β-cell clock in coordinating insulin secretion with the sleep–wake cycle, and reveal that ablation of the pancreatic clock can trigger the onset of diabetes mellitus.
6. 單細胞基因表達分析時代的來臨
【摘要】
科學(xué)家們近日首次實現(xiàn)了對物種在整個表達譜范圍內(nèi)的蛋白表達噪聲測量。該項成果是單分子技術(shù)與系統(tǒng)生物學(xué)交互融合的典范,預(yù)示了單細胞基因表達分析時代的來臨。在基因表達研究領(lǐng)域,傳統(tǒng)的研究方法是在同等條件下磨碎大量細胞,然后測量基因產(chǎn)物的數(shù)量,例如mRNA和蛋白。然而最近的研究卻發(fā)現(xiàn),看起來完全相同的單個細胞實際上表達水平完全是隨機的,存在著巨大的個體差異,科學(xué)家稱之為“噪音”。科學(xué)家們在研究單細胞生物體的“噪音”時發(fā)現(xiàn),即使是基因完全相同的細胞其行為也是完全不同的。測量不同生物體內(nèi)的蛋白表達噪音可以幫助科學(xué)家們了解生命的演化和功能。
哈佛大學(xué)化學(xué)與生物化學(xué)系謝曉亮小組最新的研究成果將該領(lǐng)域帶入了一個新的高度。 7月30日最新一期美國《科學(xué)》發(fā)表了題為《大腸桿菌蛋白組及轉(zhuǎn)錄組單分子水平測量》的論文,報道了大腸桿菌的1018個基因在單個細胞內(nèi)的絕對表達數(shù)以及各個細胞間的差異,這些基因占了大腸桿菌全基因組的四分之一左右。他們還同時測量了其中137個大量表達的基因的mRNA分子數(shù)量。盡管在同基因組細菌群的細胞中,蛋白和mRNA拷貝數(shù)差異巨大,不過通常數(shù)量較小,難以在單分子水平上檢測。謝曉亮小組的研究人員利用自己搭建的一套全新的大腸桿菌黃色熒光蛋白融合庫,成功地實現(xiàn)了單個細胞內(nèi)在單分子水平對整個表達譜范圍內(nèi)的蛋白和mRNA的定量分析。該項研究有兩個驚人的發(fā)現(xiàn)。首先,20%的蛋白質(zhì)表達水平很低,小于每個細胞一個分子。研究人員發(fā)現(xiàn)當(dāng)表達水平較低的時候,幾乎所有的蛋白分布均可用兩個參數(shù)的伽瑪分布來描述,也就是mRNA的轉(zhuǎn)錄速率和每個mRNA分子表達為蛋白質(zhì)的數(shù)量。而當(dāng)表達水平較高的時候,分布圖被其他的外部噪音所充斥。作者的另一重要發(fā)現(xiàn)是,單細胞中某基因在某一時刻的mRNA表達拷貝數(shù)與其蛋白表達拷貝數(shù)無關(guān),由此可見,單個細胞中的蛋白組分析與轉(zhuǎn)錄組分析是沒有關(guān)聯(lián)的。由于細胞中某些功能基因的蛋白質(zhì)和絕大多數(shù)mRNA 的拷貝數(shù)都相當(dāng)?shù)?,這項研究成果提供的方法將大大促進科學(xué)家對基因隨機表達和調(diào)控的理解。 這種關(guān)聯(lián)性缺失的一個原因是mRNA分子和蛋白質(zhì)分子在細胞內(nèi)的壽命長短不同。mRNA 只存在幾分鐘,而蛋白質(zhì)分子可以存在數(shù)個小時,大大超過細胞周期。此外,對很多細胞而言,一些蛋白的唯一來源來自于母細胞,而mRNA只是偶爾產(chǎn)生。這就導(dǎo)致了在細胞分裂過程中某些蛋白質(zhì)分子分配不均衡,這種現(xiàn)象在哺乳動物細胞中同樣存在。(來源:科學(xué)網(wǎng)綜合報道)
【點評】
單個細胞內(nèi)在單分子水平對整個表達譜范圍內(nèi)的蛋白和mRNA的定量分析技術(shù)的出現(xiàn)會可能會極大的改變和推進人們對細胞內(nèi)部活動的認識,會在一個相對完整的層次上去研究細胞內(nèi)部的生命規(guī)律。
【原文摘錄】Science 30 July 2010:Vol. 329. no. 5991, pp. 533 - 538
Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells
Yuichi Taniguchi, Paul J. Choi, Gene-Wei Li, et al.
Protein and messenger RNA (mRNA) copy numbers vary from cell to cell in isogenic bacterial populations. However, these molecules often exist in low copy numbers and are difficult to detect in single cells. We carried out quantitative system-wide analyses of protein and mRNA expression in individual cells with single-molecule sensitivity using a newly constructed yellow fluorescent protein fusion library for Escherichia coli. We found that almost all protein number distributions can be described by the gamma distribution with two fitting parameters which, at low expression levels, have clear physical interpretations as the transcription rate and protein burst size. At high expression levels, the distributions are dominated by extrinsic noise. We found that a single cell’s protein and mRNA copy numbers for any given gene are uncorrelated.